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Abstract. The asymptotic behavior of the cylindrical Couette flow problem for a rarefied rotating gas with 
evaporation and condensation is studied when the state of equilibrium is perturbed by the following small 
thermodynamic forces: (i) the pressure difference of the evaporating gas; (ii) the angular velocity difference 
of the cylinders; and (iii) the temperature difference of the cylinders. The problem is solved by using the 
hydrodynamic equations that follow from the balance equations of mass, momentum and energy of a viscous 
heat conducting rarefied gas. The hydrodynamic equations are solved analytically by considering slip and 
jump boundary conditions. The fields of density, velocity, temperature, heat flux vector and viscous stress 
tensor are calculated as functions of the Knudsen number for each thermodynamic force and for different 
values of the angular velocity. The asymptotic behavior of these fields are compared with those obtained 
from the kinetic equation. 

I    INTRODUCTION 

One of the basic principles of continuum mechanics is the principle of material frame indifference which states 
that the constitutive equations must be the same in inertial as well as in non-inertial systems of reference. This 
principle has no support within the framework of kinetic theory of gases as was pointed out by several authors, 
among others we cite Müller [1], Söderholm [2], Sharipov and Kremer [3] and Biscari and Cercignani [4]. 

A very simple non-inertial system is represented by the cylindrical Couette flow where a gas is confined 
between two rotating cylinders. The problems where the surfaces of the cylinders are rotating with different 
angular velocities and are at different temperatures were analyzed in the papers [3]. It was found that the 
anisotropy created by the rotation of the gas induces the following effects: i) a radial temperature gradient 
causes both radial and tangential heat fluxes; ii) the diagonal components of the viscous stress tensor are not 
zero but depend on the rotation frequency. These phenomena are observed not only in weak but also in strong 
non-equilibrium Couette flow. 

The above mentioned papers consider the heat and momentum transfer only. To take into account the mass 
transfer we have to assume that the coaxial cylinders can absorb and emit particles of the fluid. One of the 
mechanisms of the mass exchange between the gas and the cylinders could be the evaporation and condensation 
of the particles on the cylinder walls. Gas flows with evaporation and condensation on the boundary have a 
very complicated solution even in systems at rest, i.e. without rotation. This type flow was investigated by 
many authors on the basis of the kinetic theory and an extensive list of the corresponding publications can be 
found in the paper [5]. 

The flow becomes more complex if the cylinders - that confines a gas in which processes of evaporation and 
condensation are considered - rotate. This problem was solved recently by us [6] in the whole range of the 
Knudsen number by assuming that the cylinders have the same temperature and rotate with the same velocity, 
but they evaporate the gas with weakly different pressures. Some analytical results on the Couette flow with 
evaporation and condensation in the continuum regime can be found in the paper [7], while interesting results 
on the non-linear Couette flow with evaporation and condensation are presented in the paper [8] where it was 
pointed out that a bifurcation of the flow is possible. 

Recently [9] the transport phenomena in rotating rarefied gases that undergo evaporation and condensation 
on their surfaces were investigated by us on the basis of the kinetic theory of gases.   We have considered 
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that the state of equilibrium was perturbed by the following small thermodynamic forces: (i) the pressure 
difference of the evaporate gas; (ii) the angular velocity difference of the cylinders; and (iii) the temperature 
difference of the cylinders. For every thermodynamic force all transport phenomena, of mass, momentum and 
heat transfer were calculated, i.e. the direct effects such as: (i) the mass transfer caused by the pressure 
difference, (ii) the momentum transfer caused by the velocity difference, and (iii) the heat flux caused by the 
temperature difference. Further the Onsager-Casimir reciprocity relations for the cross effects were verified. 
The used kinetic equation was the Shakov model of the Boltzmann equation and it has been solved by the 
discrete velocity method where the discontinuity of the distribution function has been taken into account. 

The aim of this work is to find the asymptotic behavior of the above mentioned phenomena by using the 
hydrodynamic equations that follow from the balance equations of mass, momentum and energy of a viscous 
heat conducting rarefied gas. The hydrodynamic equations are solved analytically by considering slip and jump 
boundary conditions [10]. The fields of density, velocity, temperature, heat flux vector and viscous stress tensor 
are calculated as functions of the Knudsen number for each thermodynamic force and for different values of the 
angular velocity. The asymptotic behavior of these fields are compared with those obtained from the kinetic 
equation [9]. 

II    HYDRODYNAMIC SOLUTION 

We consider a rarefied gas between two coaxial rotating cylinders with radii i?o and Pi (Po > Pi)- The 
cylinders are rotating around the z-axis and they are supposed to be so long that end effects can be neglected. 
Further we assume that the equilibrium state is weakly disturbed by the following three factors: (i) The outer 
cylinder evaporates the particles with an equilibrium pressure Po(Po), while the pressure of evaporated particles 
from the inner cylinder Pi slightly differs from the equilibrium pressure at its surface, i.e. 

I API 
Pi = P0(Pi) + AP,        -i—L « 1. (1) 

The equilibrium pressure is given by the equation of state Po{r') = no(r')kT0 where r' = \/x2 + y2 is the radial 
coordinate and n0(r') is the particle number density between the cylinders 

,n n00(l-p2/Pg)(/?n0P0)
2 2 /  m   \1/2 

»o(r) = .    ' ''  ^" ..       '   ,21 exp (^n0r')1,    ß =    1rUF-        ■ (2) 
exppnoPo)2]-exp[(/3fi0Pi)2] V2fcTo/ 

In the above equation noo denotes the number density when the cylinders are at rest (Oo = 0), m is the mass 
of a gas particle and k is the Boltzmann constant; (ii) The outer cylinder rotates with an angular velocity Vl0, 
while the angular velocity of the inner cylinder fii slightly differs from Qo, i.e. 

fii = n0 + An,        /3Pi |Afi| < 1. (3) 

The smallness of Ail means that the difference between the velocities of the surfaces is smaller than the sound 
speed; (iii) The outer cylinder is at the equilibrium temperature T0, while the temperature of the inner cylinder 
Ti slightly differs from T0, i.e. 

IATI 
T1=T0 + AT,        LJ « i. (4) 

Jo 

There are two main parameters that determine the solution of the problem: the inverse Knudsen number 
which is the rarefaction parameter 8 = v/^rP0/(2Aoo) where Aoo is the molecular mean free path at the density 
noo and at temperature To; and the dimensionless angular velocity to = /3fioPo- 

In order to solve the above mentioned problem in the hydrodynamic regime flow we use the balance equations 
of mass density g, momentum density gu\ and internal energy density ge that read 

dg     dgu'j     „     dgu',       8  .    .  .     _,. . .     n     dge      d  .     .      ,.     „9M!-       , du',     „    ,_. 

These balance equations are supplemented by the constitutive equations for the viscous stress a'^, heat flux 
vector q'i and specific internal energy e: 
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O«   =M 
2 <9< g 

3 9x'Öij 9i = -K 
3fc 
2m' (6) 

The above equations represent the constitutive equations of a Newtonian heat conducting fluid without bulk 
viscosity. The coefficient of thermal conductivity K is given in terms of the coefficient of shear viscosity fj, by 
K = 15fcju/(4m). For a monatomic ideal gas K and /J, are only functions of the temperature T. 

By taking into account that all fields depend only on the radial coordinate r' and that we are looking for a 
stationary solution of the gas flow, Eqs (5) reduce to 

?i(r'"-]=o- 
,du'r u, 12' 

e\ur-^-- 
£.     - 

dP     4 d fj, d(r'u'r) 

dr' 
2^  ,dp 
r'^dr1' (7) 

du'      u'ru' 

r'2 dr' 
„^ A (< ß    dr' { r' (8) 

5P ,dT      1   d   ( ,   dT 
2T  rdr'     r' dr' \      dr' 

,dP 
u^d?=n-3 

1 d(r'u'r) 
r'    dr' 

1«; d(r'u'r)     ^u'2 

IV*'Jj fit* f   ** 
r   

dr' ■   (9) 

In the above equations the mass density g has been represented by the equation of state g = mP/kT. Eqs (7) 
- (9) refer to a system of four coupled differential equations for the fields u'r(r'),u'v(r'), P(r'), T(r') which we 
proceed to find its solution for given boundary conditions. 

We note first that for a linearized problem, in which the conditions (1), (3) and (4) hold, we can write 

P(r') = Po(r') "£v^xa <(r') = ß~l £4a)*« (10) 

<(r') = n0r'+ß-1 £«<,■>*. TV) = T0 1 + ^TMXa (11) 

where a = P, Ü,T, v^a\ur ',xv"' and T^ are dimensionless quantities and Xa are the thermodynamic forces 
XP = AP/P0(Ri), Xn = ßRiAtt and XT = AT/T0. 

Next we insert (10) and (11) into Eqs (7) - (9) and get the linearized field equations for the dimensionless 
quantities v^a\v.r   ,Uy   and T^ that read 

d\n[noru. («)i dv^ 
dr dr v    '    3n0  ~r   '    S ' 

d 
dr 

'ld{u(^r) 
r     dr "00 

d 
dr 

' drW 
dr 

16n0o    (a)   2    2r 
15no 

(12) 

(13) 

where r = r'/RQ is a dimensionless quantity.   The general solution of the system (12) - (13) for the fields 

v^, ur   , Up   and r^ are 

u(«) = P^Ln        „(«) = 2Su>D^ I rlnr - B[a)r + ^-] ,    T<
0

> = ^-D^u?5 (c^ lnr + da) - r2) , 
n0r 

v \ I ** / 

(14) 

v{a) = UbJ2D{a) \g{r) - ^-r2 + ß|a) lnr + ^ (r4 - 2Cf V - 2C[a)g(r)) + iW 
4 ng0   £>(")w2 

3n2(r) 

(15) 
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where D^a\ B{a , B^   , C}a , C.^   , and L^ are constants of integration and g(r) = r2lnr — r2/2. 

Once the fields uf (r), «^   (r), r^(r), u^(r) are known we can also obtain the non-vanishing components 
of the heat flux vector and for the viscous stress tensor from (6), (14) and (15): 

(a)=     15 1rfrW 
qr 8 5   dr 

^D^UJ
2 Ci^1--2r), ff(a> = - 

0 

2 du. (a) 

3   dr 
1 u. 
37 

(a) 1£>(«) "00 

3 £r2 n0(r) 
(3 + 4w2r) , 

(16) 

(«) ,(«) 2«. 
3   r        3   dr 3 <5r2 no(r) l j '      r¥> " 26 

UUm uteri 

dr r 
= D^CJ    1-2^ 

(a)' 

For w=0 the solution of the system of differential equations (12) and (13) reduces to 

u^r = D^\ la)=Ela)r- E. («) 
T(a) = Fi(«) ln r + ^2(«) f „(a) = G(«) ? 

(17) 

(18) 

where D0
a), ß}a), £#*\ F^, F2

(a) and G^ are constants of integration. 

Ill    SLIP AND JUMP BOUNDARY CONDITIONS 

In order to determine the constants of integration of the previous section one has to know the boundary 
conditions at the outer cylinder (r = 1) and at the inner cylinder (r = RI/RQ)- The slip and jump boundary 
conditions adopted here that correspond to a perturbation of the pressure, temperature and angular velocity 
on the outer cylinder are: 

i/a) = ai«W - 
a2   n0o  dr^a)        a3   n00  duf>      a4   n00    (a) 

ö no(l)   dr 6 no(l)   dr 5 no(l) 'r     ' (19) 

(a) _       (a)     a%  "00  drw       a7  n00  dwrj     a8  "00    (a) 
T     -a5ur 5 „„(!)   dr j no(i)   rfr J „„(!)"'   ' (20) 

a9   "00    1 du, 
(«)        „(a)' 

J no(l) I    dr r    i 

while the corresponding slip and jump boundary conditions on the inner cylinder read 

j («) 
7lQ0 "Mr i/a) = (5Pa — ai«, (a)        ^2 "00 

Jr(a) ag 
2Q4      ,2°°,.. .u^, 

<5 n0(Ri/Ro)   dr 5 n0(Ri/R0)   dr 5 n0(Ri/Ro) 

(21) 

(22) 

T<°> = *TQ - Q54
a) + g       ,ü00„/rW   + 2tt7 n°° 

» 
■ Q8 n°° „(«) 

5 no(Ri/Ro)   dr d no(i?i/i?o)   dr 5 no(Ri/Ro) 
(23) 

(a)_r Q9 "00 /dM^a)        U^\ 
U*   - dna +  6 n0(R1/R0) {   dr r   ) ' 

In the above equations Spa, ST0 and Sna are Kronecker symbols and a = P,T,Ü. 

(24) 

130 



The terms in the jump of the pressure as stated in the boundary conditions above have the following meaning: 
(a) a\Ur is due to the evaporation and condensation at the solid boundary; (b) {a%j'ö)(d,T^/'dr) is due to 
a normal gradient of temperature at the solid boundary; (c) (2az/8)(dur jdr) is due to a normal gradient of 
the normal component of the velocity at the solid boundary; (d) {aij8)ur and {2aij8)ur are due to the 
curvature of the solid surfaces. The modulus of the mean curvature, as defined in the work by Sone [10], is equal 
to one for the internal cylinder and 1/2 for the external cylinder. The terms in the jump of the temperature 
have the same meaning as those that appear in the jump of the pressure. The jump in the tangential velocity 
is due to the normal gradient of the tangential velocity. The coefficients a\ through a9 are calculated from a 
kinetic equation and the values for these coefficients, based on the BGK model, are presented by Sone [10]. 
Since we have applied the S model to solve the present problem in the kinetic regime [9], we have to use the 
coefficients based on the S model too. It was verified that the coefficients a2 and a^ based on the S model 
are 3/2 times greater than those based on the BGK model, while the other coefficients are exactly the same. 
Thus, the numerical data presented by Sone [10] can be used here if the two above mentioned coefficients 
are multiplied by 3/2. We have: ax = 2.13204, a2 = 0.83766, a3 = 0.82085, a4 = 0.38057, a5 = 0.44675, 
a6 = 1.95408, a7 = 0.33034, a$ = 0.13157 and a9 = 1.01619. 

Once the boundary conditions are known it is easy to obtain the constants of integration which appear in 
the hydrodynamic solutions (14), (15) and (18). Hence the fields of density, velocity, temperature, heat flux 
vector and stress tensor can be determined as functions of the rarefied parameter and of the angular velocity. 

IV    RESULTS 

For the flow caused by a pressure difference we have plotted in Figures 1 to 3 the kinetic and the hydrodynamic 
solutions of the fields ur , qr and arv as functions of the rarefied parameter S for different values of the 
angular velocity w. We note that a better agreement of the hydrodynamic and kinetic solutions for ur ' and 
qr ' is attained for low angular velocities. The difference in the hydrodynamic and kinetic solutions for <jrtp' 
is due to the fact that it is small as any cross-effect. The kinetic and the hydrodynamic solutions of the fields 
ur , qi- and arv for a flow caused by the velocity difference are plotted in Figures 4 to 6 as functions of the 
rarefied parameter S and of the angular velocity w. While there is a good agreement of the hydrodynamic and 
kinetic solutions for arv , the difference between the solutions for ur    and qr ' is due to the fact that both 
represent fields of cross-effects, which are usually small. The fields ur \ qr and arv which are solutions of 
the hydrodynamic and kinetic equations are plotted in Figures 7 to 9 for a flow caused by the temperature 
difference as functions of the rarefied parameter 6 and of the angular velocity OJ. There is a very good agreement 
of the hydrodynamic and kinetic solutions for aTlp' and qr ' and we note that for high rarefaction parameter 
the heat flux qT ' does not depend on u> and all curves coincide. The field ur ' corresponds also to a cross-effect 
but here the agreement between the solutions is better that the two cases analyzed above. 
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